Learning of indiscriminate distributions of document embeddings for domain adaptation
Author:
Affiliation:
1. Industrial and Mathematical Data Analytics Research Center, Seoul National University, Seoul, Korea
2. Industrial Engineering, Seoul National University, Seoul, Korea
Publisher
IOS Press
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science
Reference20 articles.
1. A theory of learning from different domains;Ben-David;Machine Learning,2010
2. S. Ben-David, J. Blitzer, K. Crammer and F. Pereira, Analysis of representations for domain adaptation, in: Advances in Neural Information Processing Systems, 2007, pp. 137–144.
3. J. Blitzer, M. Dredze, F. Pereira et al., Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification, in: ACL, Vol. 7, 2007, pp. 440–447.
4. J. Blitzer, R. McDonald and F. Pereira, Domain adaptation with structural correspondence learning, in: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 2006, pp. 120–128.
5. Cross-domain sentiment classification using sentiment sensitive embeddings;Bollegala;IEEE Transactions on Knowledge and Data Engineering,2016
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Adversarial unsupervised domain adaptation based on generative adversarial network for stock trend forecasting;Intelligent Data Analysis;2023-10-06
2. Lightweight fine-grained classification for scientific paper;Journal of Intelligent & Fuzzy Systems;2022-09-22
3. DWSA: An Intelligent Document Structural Analysis Model for Information Extraction and Data Mining;Electronics;2021-10-08
4. Compact class-conditional domain invariant learning for multi-class domain adaptation;Pattern Recognition;2021-04
5. Joint Transfer of Model Knowledge and Fairness Over Domains Using Wasserstein Distance;IEEE Access;2020
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3