Detecting malicious domain names using deep learning approaches at scale

Author:

Vinayakumar R.1,Soman K.P.1,Poornachandran Prabaharan2

Affiliation:

1. Centre for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India

2. Center for Cyber Security Systems and Networks, Amrita School of Engineering, Amritapuri, Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference31 articles.

1. Sandeep Y. , Reddy R.A.K.K and Ranjan S., Detecting algorithmically generated malicious domain names, in Proceedings of the 10th annual Conference on Internet Measurement, New York, 2010.

2. Antonakakis M. , Perdisci R. , Nadji Y. , Vasiloglou N. , Abu-Nimeh S. , Lee W. and Dagon D. , From throw-away traffic to bots: detecting the rise of DGA-based malware, in P21st USENIX Security Symposium (USENIX Security 12), pp. 491–506, 2012.

3. Detecting algorithmically generated domain-flux attacks with DNS traffic analysis;Yadav;IEEE/Acm Transactions on Networking

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing DNS Light Attack Detection through RNN-RF Integration for Imbalanced Data;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

2. Exploring GRU-based approaches with attention mechanisms for accurate phishing URL detection;Intelligent Decision Technologies;2024-06-07

3. A systematic review on research utilising artificial intelligence for open source intelligence (OSINT) applications;International Journal of Information Security;2024-06-05

4. Exploring Deep Learning Architectures for Enhanced Cyber Threat Detection: A Survey;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

5. A survey on cybersecurity knowledge graph construction;Computers & Security;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3