Auxiliary-model-based domain adaptation for reciprocating compressor diagnosis under variable conditions
Author:
Affiliation:
1. School of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Changping, Beijing, China
Publisher
IOS Press
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Reference13 articles.
1. Rolling bearing fault diagnosis under variable conditions using LMD-SVD and extreme learning machine;Tian;Mechanism and Machine Theory,2015
2. Fault diagnosis network design for vehicle on-board equipments of high-speed railway: A deep learning approach;Yin;Engineering Applications of Artificial Intelligence,2016
3. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis;Shao;Mechanical Systems and Signal Processing,2017
4. Domain adaptation for statistical classifiers;Daume;Artificial Intelligence Research,2006
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cross-scenario transfer diagnosis of reciprocating compressor based on CBAM and ResNet;Journal of Intelligent & Fuzzy Systems;2022-09-22
2. Knowledge transfer in fault diagnosis of rotary machines;IET Collaborative Intelligent Manufacturing;2022-02-20
3. Research on equipment corrosion diagnosis method and prediction model driven by data;Process Safety and Environmental Protection;2022-02
4. Fault Diagnosis Method of Reciprocating Compressor Based on Domain Adaptation under Multi-working Conditions;2021 IEEE International Conference on Mechatronics and Automation (ICMA);2021-08-08
5. Intelligent Fault Diagnosis of Reciprocating Compressor Based on Attention Mechanism Assisted Convolutional Neural Network Via Vibration Signal Rearrangement;Arabian Journal for Science and Engineering;2021-04-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3