Embodied Functional Relations: A Formal Account Combining Abstract Logical Theory with Grounding in Simulation

Author:

Pomarlan Mihai1,Bateman John A.1

Affiliation:

1. Bremen University, Bremen, Germany

Abstract

Functional relations such as containment or support have proven difficult to formalize. Although previous efforts have attempted this using hybrids of several theories, from mereology to temporal logic, we find that such purely symbolic approaches do not account for the embodied nature of functional relations, i.e. that they are used by embodied agents to describe fragments of a physical world. We propose a formalism that combines descriptions of a high level of abstraction with generative models that can be used to instantiate or recognize arrangements of objects and trajectories conforming to qualitative descriptions. The formalism gives an account of how a qualitative description of a scene or arrangement of objects can be converted into a quantitative description amenable to simulation, and how simulation results can be qualitatively interpreted. We use this to describe functional relations between objects in terms of spatial arrangements, expectations on behavior, and counterfactual expectations for when one of the participants is absent. Our method is able to tackle important questions facing an agent operating in the world, such as what would happen if an arrangement of objects is created and why. This gives the agent a deeper understanding of functional relations, including what role background objects, not explicitly asserted to participate in a functional relation such as containment, play in enabling or hindering the relation from holding.

Publisher

IOS Press

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3