Memoization based priority-aware task management for QoS provisioning in IoT gateways

Author:

Beniwal Gunjan12,Singhrova Anita1

Affiliation:

1. Department of Computer Science & Engineering, Deenbandhu Chhotu Ram University of Science and Technology (DCRUST), Murthal, India

2. Department of Computer Science and Engineering, Maharaja Surajmal Institute of Technology, New Delhi, India

Abstract

Fog computing is a paradigm that works in tandem with cloud computing. The emergence of fog computing has boosted cloud-based computation, especially in the case of delay-sensitive tasks, as the fog is situated closer to end devices such as sensors that generate data. While scheduling tasks, the fundamental issue is allocating resources to the fog nodes. With the ever-growing demands of the industry, there is a constant need for gateways for efficient task offloading and resource allocation, for improving the Quality of Service (QoS) parameters. This paper focuses on the smart gateways to enhance QoS and proposes a smart gateway framework for delay-sensitive and computation-intensive tasks. The proposed framework has been divided into two phases: task scheduling and task offloading. For the task scheduling phase, a dynamic priority-aware task scheduling algorithm (DP-TSA) is proposed to schedule the incoming task based on their priorities. A Memoization based Best-Fit approach (MBFA) algorithm is proposed to offload the task to the selected computational node for the task offloading phase. The proposed framework has been simulated and compared with the traditional baseline algorithms in different test case scenarios. The results show that the proposed framework not only optimized latency and throughput but also reduced energy consumption and was scalable as against the traditional algorithms.

Publisher

IOS Press

Subject

Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3