Chapter 10. Random Satisfiabiliy

Author:

Achlioptas Dimitris

Abstract

In the last twenty years a significant amount of effort has been devoted to the study of randomly generated satisfiability instances. While a number of generative models have been proposed, uniformly random k-CNF formulas are by now the dominant and most studied model. One reason for this is that such formulas enjoy a number of intriguing mathematical properties, including the following: for each k≥3, there is a critical value, rk, of the clauses-to-variables ratio, r, such that for r<rk a random k-CNF formula is satisfiable with probability that tends to 1 as n→∞, while for r>rk it is unsatisfiable with probability that tends to 1 as n→∞. Algorithmically, even at densities much below rk, no polynomial-time algorithm is known that can find any solution even with constant probability, while for all densities greater than rk, the length of every resolution proof of unsatisfiability is exponential (and, thus, so is the running time of every DPLL-type algorithm). By now, the study of random k-CNF formulas has also attracted attention in areas such as mathematics and statistical physics and is at the center of an area of intense research activity. At the same time, random k-SAT instances are a popular benchmark for testing and tuning satisfiability algorithms. Indeed, some of the better practical ideas in use today come from insights gained by studying the performance of algorithms on them. We review old and recent mathematical results about random k-CNF formulas, demonstrating that the connection between computational complexity and phase transitions is both deep and highly nuanced.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3