Neurogenesis Makes a Crucial Contribution to the Neuropathology of Alzheimer’s Disease

Author:

Young John K.1

Affiliation:

1. Professor Emeritus, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA

Abstract

One unexplained feature of Alzheimer’s disease (AD) is that the lateral entorhinal cortex undergoes neurodegeneration before other brain areas. However, this brain region does not have elevated levels of amyloid peptides in comparison with undamaged regions. What is the cause of this special vulnerability of the entorhinal cortex? One special feature of the lateral entorhinal cortex is that it projects to newborn neurons that have undergone adult neurogenesis in the dentate gyrus of the hippocampus. Neurogenesis is abnormal in human AD brains, and modulation of neurogenesis in experimental animals influences the course of AD. This complex process of neurogenesis may expose axon terminals originating from neurons of the entorhinal cortex to a unique combination of molecules that can enhance toxic effects of amyloid. Retrograde degeneration of neurons with axons terminating in the dentate gyrus provides a likely explanation for the spatial patterns of neuronal cell death seen in AD. Specialized astrocytes in the dentate gyrus participate in adult neurogenesis and produce fatty acid binding protein7 (FABP7). These FABP7+ cells undergo an aging-related mitochondrial pathology that likely impairs their functions. This age-related abnormality may contribute to the impairment in neurogenesis seen in aging and Alzheimer’s disease. Also, a compromised function of these astrocytes likely results in local elevations of palmitic acid, iron, copper, and glucose, which all enhance the toxicity of amyloid peptides. Treatments that modulate neurogenesis or diminish the production of these toxic substances may prove more successful than treatments that are solely aimed at reducing the amyloid burden alone.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3