Evaluation of road condition based on BA-BP algorithm

Author:

Jia Dongyao1,Zhang Chuanwang1,Lv Dandan1

Affiliation:

1. Advanced Control Institute, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China

Abstract

BP (Back Propagation) neural network has been widely applied for classification tasks including road condition evaluation, however, BP model has the problem of lower accuracy and slow convergence rate. A novel road condition evaluation method based on BA-BP (Bat-Back Propagation) algorithm is proposed for the unstructured small road condition evaluation, which filled the vacancy of specific small road scenes. Firstly, five kinds of road condition features including roughness, curvature, obstacle width to height ratio, obstacle effective area ratio, obstacle coefficient are defined and extracted. Then obstacles from region of interest (ROI) in front of the vehicle are analyzed. Finally, Bat algorithm is used to optimize the searching of initial network weights and thresholds, which obtained a higher accuracy of 95.15% and efficient training process. Comparison experiments showed that the proposed approach improved the accuracy with 5.31%, 3.32%, 3.17% than the BP, GA-BP and FA-BP model, respectively. As for the processing time of collected road data, BA-BP network consumed less time of 2 s and 3.9 s compared with GA-BP and FA-BP. Proposed method also outperformed than most of the state-of-the-art approaches with higher accuracy and simpler hardware environments, which proved its potential of being popularized in large scale real-time systems.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference23 articles.

1. Crowd management: The overlooked component of smart transportation systems;Boukerche;IEEE Communications Magazine,2019

2. Applicability of smartphone-based roughness data for rural road pavement condition evaluation;Sandamal;International Journal of Pavement Engineering

3. Unpaved road detection based on spatial fuzzy clustering algorithm;Bao;EURASIP Journal on Image and Video Processing,2018

4. Design of intrusion detection system for Internet of Things based on improved BP neural network;Yang;IEEE Access,2019

5. Vessel traffic flow analysis and prediction by an improved PSO-BP mechanism based on AIS data;Zhang;Evolving Systems,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3