Affiliation:
1. Advanced Control Institute, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
Abstract
BP (Back Propagation) neural network has been widely applied for classification tasks including road condition evaluation, however, BP model has the problem of lower accuracy and slow convergence rate. A novel road condition evaluation method based on BA-BP (Bat-Back Propagation) algorithm is proposed for the unstructured small road condition evaluation, which filled the vacancy of specific small road scenes. Firstly, five kinds of road condition features including roughness, curvature, obstacle width to height ratio, obstacle effective area ratio, obstacle coefficient are defined and extracted. Then obstacles from region of interest (ROI) in front of the vehicle are analyzed. Finally, Bat algorithm is used to optimize the searching of initial network weights and thresholds, which obtained a higher accuracy of 95.15% and efficient training process. Comparison experiments showed that the proposed approach improved the accuracy with 5.31%, 3.32%, 3.17% than the BP, GA-BP and FA-BP model, respectively. As for the processing time of collected road data, BA-BP network consumed less time of 2 s and 3.9 s compared with GA-BP and FA-BP. Proposed method also outperformed than most of the state-of-the-art approaches with higher accuracy and simpler hardware environments, which proved its potential of being popularized in large scale real-time systems.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献