Affiliation:
1. College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan
2. Henan Engineering Laboratory of Intellectual Business and Internet of Things Technologies, Xinxiang Henan, China
Abstract
The multi-agent collaborative hunting problem is a typical problem in multi-agent coordination and collaboration research. Aiming at the multi-agent hunting problem with learning ability, a collaborative hunt method based on game theory and Q-learning is proposed. Firstly, a cooperative hunting team is established and a game model of cooperative hunting is built. Secondly, through the learning of the escaper’s strategy choice, the trajectory of the escaper’s limited T-step cumulative reward is established, and the trajectory is adjusted to the hunter’s strategy set. Finally, the Nash equilibrium solution is obtained by solving the cooperative hunt game, and each hunter executes the equilibrium strategy to complete the hunt task. C# simulation experiment shows that under the same conditions, this method can effectively solve the hunting problem of a single runaway with learning ability in the obstacle environment, and the comparative analysis of experimental data shows that the efficiency of this method is better than other methods.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献