The influence of roughness in the equilibrium problem in lubrication with imposed load

Author:

Ciuperca I.1,Jai M.2,Tello J.I.3

Affiliation:

1. Université de Lyon, Université Lyon 1, CNRS, UMR 5208, Institut Camille Jordan, Bat. Braconnier, 43, blvd du 11 novembre 1918, F-69622 Villeurbanne Cedex, France. E-mail: ciuperca@math.univ-lyon1.fr

2. Université de Lyon, Insa de Lyon, CNRS, UMR 5208, Institut Camille Jordan, Bat Léonard Vinci, 20 Av. A. Einstein, F-69621 Villeurbanne Cedex, France. E-mail: Mohammed.Jai@insa-lyon.fr

3. Matemática Aplicada a las T.I.C., ETSI Sistemas Infomáticos, Universidad Politécnica de Madrid, 28031 Madrid, Spain

Abstract

In this article we study a lubricated system consisting on a slider moving over a smooth surface and a known external force (the load) applied upon the slider. The slider moves at constant velocity and close proximity to the surface and the gap is filled by an incompressible fluid (the lubricant). At the equilibrium, the position of the slider presents one degree of freedom to be determined by the balance of forces acting on the system: the load and the total force exerted by the pressure of the lubricant. The pressure distribution is described by a variational inequality of elliptic type known as Swift–Stieber model and based on Reynolds equation. The distance h between the surfaces in a two dimensional domain Ω is given by h η ( x 1 , x 2 , y ) = h 0 ( x 1 , x 2 ) + h 1 ( y ) + η , ( x 1 , x 2 ) ∈ Ω , y ∈ [ 0 , 1 ] where h 0 ( x 1 , x 2 ) ∼ | x 1 | α for α > 0 and h 1 ( y ) ∼ | y − y 0 | β for y being the homogenization variable. The main result of the article quantify the influence of the roughness in the load capacity of the mechanism in the following way: If  α < 3 γ for  0 < γ ⩽ 2 α < min { 1 γ − 2 , 3 γ } for  γ > 2 then, the mechanism presents finite load capacity, i.e. lim η → 0 ∫ Ω p η < ∞. Infinite load capacity is obtained for γ > 1 and α > 2 / ( γ − 1 ). A one dimensional particular case is given for γ > 3 / 2 with infinite load capacity.

Publisher

IOS Press

Subject

General Mathematics

Reference16 articles.

1. Sur quelques modèlisations de la zone de cavitation en lubrification hydrodynamique;Bayada;J. of Theor. and Appl. Mech.,1986

2. The transition between the Stokes equation and the Reynolds equation: A mathematical proof;Bayada;Appl. Math. Opt.,1986

3. A double-scale analysis approach of the Reynolds roughness. Comments and application to the journal bearing;Bayada;ASME J. Tribol.,1989

4. A survey on mathematical aspects of lubrication problems;Bayada;Boletín SEMA,2007

5. Existence of equilibria in articulated bearings;Buscaglia;Journal of Math. Anal. and Applications,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3