Global zero-relaxation limit of the non-isentropic Euler–Poisson system for ion dynamics

Author:

Feng Yuehong1,Li Xin2,Wang Shu1

Affiliation:

1. College of Applied Sciences, Beijing University of Technology, Beijing 100022, China

2. College of Sciences, Beijing Information Science and Technology University, Beijing 100192, China

Abstract

This paper is concerned with smooth solutions of the non-isentropic Euler–Poisson system for ion dynamics. The system arises in the modeling of semi-conductor, in which appear one small parameter, the momentum relaxation time. When the initial data are near constant equilibrium states, with the help of uniform energy estimates and compactness arguments, we rigorously prove the convergence of the system for all time, as the relaxation time goes to zero. The limit system is the drift-diffusion system.

Publisher

IOS Press

Subject

General Mathematics

Reference32 articles.

1. Global existence of smooth solutions of the N-dimensional Euler–Poisson model;Alì;SIAM J. Math. Anal.,2003

2. Global existence and relaxation limit for smooth solutions to the Euler–Poisson model for semiconductors;Alì;SIAM J. Math. Anal.,2000

3. Analyse asymptotique de l’équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas;Brezis;C. R. Acad. Sci. Paris.,1995

4. F. Chen, Introduction to Plasma Physics and Controlled Fusion, Vol. 1, Plenum Press, New York, 1984.

5. Global solutions to the isothermal Euler–Poisson plasma model;Cordier;Appl. Math. Lett.,1995

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3