Neurodegeneration of the Globus Pallidus Internus as a Neural Correlate to Dopa-Response in Freezing of Gait

Author:

Lench Daniel H.1,Keith Kathryn2,Wilson Sandra1,Padgett Lucas1,Benitez Andreana13,Ramakrishnan Viswanathan2,Jensen Jens H.43,Bonilha Leonardo1,Revuelta Gonzalo J.15

Affiliation:

1. Department of Neurology, Medical University of South Carlina, Charleston, SC, USA

2. Department of Public Health Sciences, Medical University of South Carlina, Charleston, SC, USA

3. Center for Biomedical Imaging, Medical University of South Carlina, Charleston, SC, USA

4. Department of Neuroscience, Medical University of South Carlina, Charleston, SC, USA

5. Ralph H. Johnson VA Medical Center, Charleston, SC, USA

Abstract

Background: Background: Parkinson’s disease (PD) patients who develop freezing of gait (FOG) have reduced mobility and independence. While some patients experience improvement in their FOG symptoms with dopaminergic therapies, a subset of patients have little to no response. To date, it is unknown what changes in brain structure underlie dopa-response and whether this can be measured using neuroimaging approaches. Objective: We tested the hypothesis that structural integrity of brain regions (subthalamic nucleus and globus pallidus internus, GPi) which link basal ganglia to the mesencephalic locomotor region (MLR), a region involved in automatic gait, would be associated with FOG response to dopaminergic therapy. Methods: In this observational study, thirty-six participants with PD and definite FOG were recruited to undergo diffusion kurtosis imaging (DKI) and multiple assessments of dopa responsiveness (UPDRS scores, gait times ON versus OFF medication). Results: The right GPi in participants with dopa-unresponsive FOG showed reduced fractional anisotropy, mean kurtosis (MK), and increased radial diffusivity relative to those with dopa-responsive FOG. Furthermore, using probabilistic tractography, we observed reduced MK and increased mean diffusivity along the right GPi-MLR tract in dopa-unresponsive FOG. MK in the right GPi was associated with a subjective dopa-response for FOG (r = –0.360, df = 30, p = 0.043) but not overall motor dopa-response. Conclusion: These results support structural integrity of the GPi as a correlate to dopa-response in FOG. Additionally, this study suggests DKI metrics may be a sensitive biomarker for clinical studies targeting dopaminergic circuitry and improvements in FOG behavior.

Publisher

IOS Press

Subject

Cellular and Molecular Neuroscience,Neurology (clinical)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3