A novel maternal thyroid disease prediction using multi-scale vision transformer architecture with improved linguistic hedges neural-fuzzy classifier

Author:

H Summia Parveen1,S Karthik2,R Sabitha2

Affiliation:

1. Computer Science and Engineering, Sri Eshwar College of Engineering, Coimbatore, India

2. Computer Science and Engineering, SNS College of Technology, Coimbatore, India

Abstract

BACKGROUND: Early pregnancy thyroid function assessment in mothers is covered. The benefits of using load-specific reference ranges are well-established. OBJECTIVE: We pondered whether the categorization of maternal thyroid function would change if multiple blood samples obtained early in pregnancy were used. Even though binary classification is a common goal of current disease diagnosis techniques, the data sets are small, and the outcomes are not validated. Most current approaches concentrate on model optimization, focusing less on feature engineering. METHODS: The suggested method can predict increased protein binding, non-thyroid syndrome (NTIS) (simultaneous non-thyroid disease), autoimmune thyroiditis (compensated hypothyroidism), and Hashimoto’s thyroiditis (primary hypothyroidism). In this paper, we develop an automatic thyroid nodule classification system using a multi-scale vision transformer and image enhancement. Graph equalization is the chosen technique for image enhancement, and in our experiments, we used neural networks with four-layer network nodes. This work presents an enhanced linguistic coverage neuro-fuzzy classifier with chosen features for thyroid disease feature selection diagnosis. The training procedure is optimized, and a multi-scale vision transformer network is employed. Each hop connection in Dense Net now has trainable weight parameters, altering the architecture. Images of thyroid nodules from 508 patients make up the data set for this article. Sets of 80% training and 20% validation and 70% training and 30% validation are created from the data. Simultaneously, we take into account how the number of training iterations, network structure, activation function of network nodes, and other factors affect the classification outcomes. RESULTS: According to the experimental results, the best number of training iterations is 500, the logistic function is the best activation function, and the ideal network structure is 2500-40-2-1. CONCLUSION: K-fold validation and performance comparison with previous research validate the suggested methodology’s enhanced effectiveness.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3