Hierarchical structure optimal setting approach for production indexes of the rolling heating furnace temperature field

Author:

Bao Qingfeng12,Zhang Sen12,Guo Jin12,Ding Dawei12,Zhang Zhenquan3

Affiliation:

1. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China

2. Key Laboratory of Knowledge Automation for Industrial Processes, Ministry of Education, Beijing, China

3. HBIS Group Chengsteel Company, Hebei, China

Abstract

 In order to improve the optimal setting temperature problem to achieve the global optimum of product performance, costs and benefits. In this article, a hierarchical structure optimal setting approach of production indexes for the rolling heating furnace temperature field (RHFTF) is proposed. It is composed of three layers with different functions to obtain the temperature control setting model of the RHFTF. In the first layer, the bi-feature Gaussian mixture model clustering (BFGMMC) algorithm of loading plan is proposed to optimize the setting of a limited number of slabs. In the second layer, the type-2 fuzzy rule interpolation (T2FRI) setting method is developed to obtain the optimal setting curve. Meanwhile, an improved KH (Kóczy-Hirota) α-cut distance (IKHCD) algorithm is proposed to get the miss information between any two adjacent interpolation points. In the third layer, knowledge feedforward compensation of rule matrices (KFCRM) algorithm is presented to improve the anti-interference ability of the setting model. The results of the study can demonstrate that the proposed method improves the accuracy of the model and optimizes the control strategy. Furthermore, the experimental results show that the proposed method meets the process technical requirements.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3