Noise Removal-based Thresholding framework for Arrhythmia classification

Author:

Prajitha C.1,Sridhar K.P.1,Baskar S.1

Affiliation:

1. Department of Electronics and Communication Engineering/Centre for Interdisciplinary Research, Karpagam Academy of Higher Education, Coimbatore, India

Abstract

Electrocardiogram (ECG) signal analyses can enhance human life in various ways, from detecting and treating heart illness to controlling the lives of cardiac-diseased people. ECG analysis has become crucial in medical studies for accurately detecting cardiovascular diseases (CVDs). Cardiac Arrhythmia is one of the major life-threatening diseases. Analyzing ECG signals is the easiest way to detect Arrhythmia. Different noises often corrupt the ECG signals, like power line interference, electromyographic (EMG) noise, and electrode motion artifact noise. Such noises make it difficult to identify the various peaks in the ECG signal for arrhythmia classification. To overcome such problems, Noise Removal-based Thresholding (NRT) framework has been introduced to remove noises from ECG signals and accurately classify Arrhythmia. Discrete Wavelet transform reduces noise from ECG signals in the pre-processing stage. The noise-removed signal is segmented by K-means clustering for R-peak detection by finding all local maximum points from the signal. The signal features are extracted by Burg’s method to obtain good frequency resolution and quick integration for short-time signals in the form of a cumulative distribution function. All features collected from R-peak are fed to the Iterative Convolutional Neural Network (ICNN) and classified the arrhythmia types based on the alignment of a few variables to work well with the Euclidean distance metric. The NRT framework is evaluated based on the data obtained from the MIT-BIH Arrhythmia dataset and achieves the Accuracy of 99.45 %, Positive Prediction of 98.92%, F1-Score of 98.95%, SNR of 35 dB, MSE of 0.001, RMSE of 0.002

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3