Cataract classification and grading in federated learning environment using CNN based Modified-ResNet-50

Author:

Essaki Muthu A.1,Saravanan K.2

Affiliation:

1. Department of Computer Science and Engineering, SCAD College of Engineering and Technology Tirunelveli, Tamilnadu, India

2. Department of Computer Science and Engineering, College of Engineering, Guindy, Anna University, Chennai

Abstract

Cataract, a common eye disease, causes lens opacification, which can lead to blindness. Early cataract detection in a privacy-preserving approach has led us to investigate the concept of Federated Learning (FL) and its prominent technique, known as Federated Averaging (FedAVG). Federated learning has the potential to solve the privacy issues by allowing data servers to train their models natively and distribute them without invading patient confidentiality. This research introduces an interactive federated learning framework that permits multiple medical institutions to screen cataract from split lamp images utilising convolutional neural network (CNN) without sharing patient data, as well as grade normal, mild, moderate, and severe cataracts. The CNN is developed based on Modified-ResNet-50 and FedAVG technique could achieve relatively high accuracy. The experimental results demonstrate that the proposed modification reduces the processing time to a greater extent.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3