Research on feature extraction method of spindle vibration detection of weak signals for rapier loom fault diagnosis in strong noise background

Author:

Xiao Yanjun123,Zhao Yue12,Li Zeyu1,Wan Feng1

Affiliation:

1. School of Mechanical Engineering, Hebei University of Technology, Tianjin, China

2. Career Leader Intelligent Control Automation Company, Suqian, Jiangsu Province, China

3. Tianjin Key Lab Power Transmiss & Safety Technol, Department State Key Lab Reliabil & Intellectual Elect, Tianjin, Peoples R China

Abstract

Fault diagnosis of rapier loom is an inevitable requirement to meet the demand of intelligent manufacturing. Facing the strong noise interference caused by complex working environment, accurate and reliable vibration signal detection of blade loom spindle is the key to realize the rapier loom fault diagnosis. This paper proposes a method to extract the spindle vibration signal of the rapier loom by Adaptive Piecewise Hybrid Stochastic Resonance (APHSR) after the Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN). Firstly, ICEEMDAN is used to pre-process the weak vibration signal containing noise, decompose the signal into multiple IMF components and display the high and low frequency signal characteristics of the original signal. Then, the energy density method and the correlation coefficient method are used to remove high and low noise, respectively, to filter the optimal IMF components, and then the signal containing valid information is reconstructed. Finally, the reconstructed signal is input to APHSR for noise-assisted enhancement after scale transformation to restore the faint vibration signal feature frequencies and achieve effective feature extraction. Through the simulation experiment and the engineering fault experiment analysis, comparing ICEEMDAN-APHSR with CEEMDAN-SR, ICEEMDAN-SR, CEEMDAN-APHSR methods. The difference between the spectrum amplitude, the spectrum amplitude and the maximum noise and the maximum signal to noise ratio (SNR) of the fault feature frequency of the rapier loom spindle bearing increased by 3.3668 dB,1.7205 dB,2.3952 dB, respectively. The results show that ICEEMDAN-APHSR method can accurately extract the fault feature frequency of the spindle bearing of rapier loom, and effectively solves the problem of extracting the weak vibration signal feature of rapier loom in the background of strong noise. This method is beneficial to the future research of rapier loom fault diagnosis, and is of great significance to promote the maintenance of loom equipment and production safety and quality.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference27 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3