A generalized approach to compute neutrosophic k-factor analysis of variance

Author:

Ullah Sami1,Kashif Muhammad2,Aslam Muhammad3,Haider Gulfam4,AlAita Abdulrahman5,Saleem Muhammad6

Affiliation:

1. College of Agriculture, University of Sargodha, Sargodha, Pakistan

2. Department of Mathematics and Statistics, University of Agriculture Faisalabad, Pakistan

3. Department of Statistics, Faculty of Science, King Abdulaziz University, Saudi Arabia

4. Economics, FAST National University of Computer and Emerging Sciences, Chiniot Faisalabad Campus

5. Department of Statistics, University of Isfahan, Isfahan, Iran

6. Department of Industrial Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

The application of classical statistical methods is not feasible given the presence of imprecise, fuzzy, uncertain, or undetermined observations in the underlying dataset. This is due to the existence of uncertainties pervading every aspect of real-life situations, which cannot always be accurately addressed by classical statistical approaches. In order to tackle this problem, a new methodology known as neutrosophic analysis of variance (NANOVA) has been developed as an extension of classical approaches to analyze datasets with uncertainty. The proposed approach can be applied regardless of the number of factors and replications. Moreover, NANOVA introduces a novel matrix-based approach to derive the F_N-test in an uncertain environment. To assess the effectiveness of NANOVA, various real datasets have been employed, and research findings on single- and two-factor NANOVAs with measures of indeterminacy have been presented. According to our comparisons, NANOVA provides a more informative, efficient, flexible, and reliable approach to deal with uncertainties than classical statistical methods. Therefore, there is a need to go beyond conventional statistical techniques and adopt advanced methodologies that can effectively handle uncertainties.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference25 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3