Multi-state feature optimization of sign glosses for continuous sign language recognition

Author:

Lin Tao1,Chen Biao1,Wang Ruixia1,Zhang Yabo1,Shi Yu1,Jiang Nan1

Affiliation:

1. School of Computer Science & Information Engineering, Shanghai Institute of Technology, Shanghai, China

Abstract

Vision-based Continuous Sign Language Recognition (CSLR) is a challenging and weakly supervised task aimed at segmenting sign language from weakly annotated image stream sequences for recognition. Compared with Isolated Sign Language Recognition (ISLR), the biggest challenge of this work is that the image stream sequences have ambiguous time boundaries. Recent CSLR works have shown that the visual-level sign language recognition task focuses on image stream feature extraction and feature alignment, and overfitting is the most critical problem in the CSLR training process. After investigating the advanced CSLR models in recent years, we have identified that the key to this study is the adequate training of the feature extractor. Therefore, this paper proposes a CSLR model with Multi-state Feature Optimization (MFO), which is based on Fully Convolutional Network (FCN) and Connectionist Temporal Classification (CTC). The MFO mechanism supervises the multiple states of each Sign Gloss in the modeling process and provides more refined labels for training the CTC decoder, which can effectively solve the overfitting problem caused by training, while also significantly reducing the training cost in time. We validate the MFO method on the popular CSLR dataset and demonstrate that the model has better performance.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3