StynMedGAN: Medical images augmentation using a new GAN model for improved diagnosis of diseases

Author:

Wali Aamir1,Ahmad Muzammil1,Naseer Asma1,Tamoor Maria2,Gilani S.A.M.1

Affiliation:

1. Department of Computer Science, National University of Computer and Emerging Science, Faisal Town, Lahore, Pakistan

2. Department of Computer Science, Forman Christian College University, Zahoor Ilahi Road, Lahore, Pakistan

Abstract

Deep networks require a considerable amount of training data otherwise these networks generalize poorly. Data Augmentation techniques help the network generalize better by providing more variety in the training data. Standard data augmentation techniques such as flipping, and scaling, produce new data that is a modified version of the original data. Generative Adversarial networks (GANs) have been designed to generate new data that can be exploited. In this paper, we propose a new GAN model, named StynMedGAN for synthetically generating medical images to improve the performance of classification models.  StynMedGAN builds upon the state-of-the-art styleGANv2 that has produced remarkable results generating all kinds of natural images. We introduce a regularization term that is a normalized loss factor in the existing discriminator loss of styleGANv2. It is used to force the generator to produce normalized images and penalize it if it fails. Medical imaging modalities, such as X-Rays, CT-Scans, and MRIs are different in nature, we show that the proposed GAN extends the capacity of styleGANv2 to handle medical images in a better way. This new GAN model (StynMedGAN) is applied to three types of medical imaging: X-Rays, CT scans, and MRI to produce more data for the classification tasks. To validate the effectiveness of the proposed model for the classification, 3 classifiers (CNN, DenseNet121, and VGG-16) are used. Results show that the classifiers trained with StynMedGAN-augmented data outperform other methods that only used the original data. The proposed model achieved 100%, 99.6%, and 100% for chest X-Ray, Chest CT-Scans, and Brain MRI respectively. The results are promising and favor a potentially important resource that can be used by practitioners and radiologists to diagnose different diseases.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3