Secure data aggregation using quantum key management in IoT networks

Author:

Thenmozhi R.1,Sakthivel P.2,Kulothungan K.1

Affiliation:

1. Information Science and Technology, College of Engineering Guindy, Anna University, Chennai, India

2. Electronics and Communication Engineering, College of Engineering Guindy, Anna University, Chennai, India

Abstract

The Internet of Things and Quantum Computing raise concerns, as Quantum IoT defines security that exploits quantum security management in IoT. The security of IoT is a significant concern for ensuring secure communications that must be appropriately protected to address key distribution challenges and ensure high security during data transmission. Therefore, in the critical context of IoT environments, secure data aggregation can provide access privileges for accessing network services. "Most data aggregation schemes achieve high computational efficiency; however, the cryptography mechanism faces challenges in finding a solution for the expected security desecration, especially with the advent of quantum computers utilizing public-key cryptosystems despite these limitations. In this paper, the Secure Data Aggregation using Quantum Key Management scheme, named SDA-QKM, employs public-key encryption to enhance the security level of data aggregation. The proposed system introduces traceability and stability checks for the keys to detect adversaries during the data aggregation process, providing efficient security and reducing authentication costs. Here the performance has been evaluated by comparing it with existing competing schemes in terms of data aggregation. The results demonstrate that SDA-QKM offers a robust security analysis against various threats, protecting privacy, authentication, and computation efficiency at a lower computational cost and communication overhead than existing systems.

Publisher

IOS Press

Reference31 articles.

1. Internet of things (IoT): A vision, architectural elements, and future directions;Gubbi;Future Generation Computer System,2013

2. Anonymous and secure aggregation scheme in fog-based public cloud computing;Wang;Future Generation Computer System,2018

3. A method for obtaining digital signatures and public-key cryptosystems;Rivest;Communication ACM,1978

4. Elliptic curve lightweight cryptography: A survey;Lara-Nino;IEEE Access,2018

5. New directions in cryptography;Diffie;IEEE Transaction of Information Theory,1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3