Affiliation:
1. Research scholar Anna University, Chennai, India
2. E.G.S Pillay Engineering College, Nagapattinam, India
Abstract
Recommender systems based on sentiment analysis become challenging due to the presence of enormous data available over the internet. With the lack of proper data cleaning and analysis methods, existing machine learning (ML) techniques fail to generate accurate recommendations. To overcome this issue, this paper proposes a Light Deep Learning (LightDL)-based recommender system that uses Twitter-based reviews. First, the data is collected from Twitter and cleaned by subsequent data cleaning processes. Then, this pre-processed data is fed into the LightDL model, which learns the important features like hashtags, unigrams, multigrams, etc. from each piece of data. Here, we have learned about four groups of features, including semantic features, syntactic features, symbolic features, and tweet-based features. Finally, the data is classified into positive, negative, and neutral categories according to the learned features. On the basis of classified sentiment, the review is generated to the users. Finally, the model is evaluated in terms of accuracy, precision, recall, f-measure, and error rate through extensive experiments in Matlab. The proposed LightDL model outperforms in all performance measures; specifically, it achieves 95% accuracy for the Twitter dataset.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献