A novel energy consumption prediction method for chillers based on an improved support vector machine

Author:

Cai Jianyang1,Yang Haidong1,Xu Kangkang1

Affiliation:

1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China

Abstract

The energy consumption prediction of the chiller is an important means to reduce the energy consumption of buildings. Therefore, a novel energy consumption prediction model for chillers based on an improved support vector machine (ICA-DE-SVM) is proposed. The imperialist competitive algorithm (ICA) is used to optimize the penalty coefficient and kernel function width of SVM, greatly improving the generalization ability and prediction accuracy of the SVM model. The assimilation process is very important in ICA. Colonies of empires move randomly toward imperialists during the assimilation process in ICA, which decreases population diversity and can lead to premature convergence. Therefore, to create more new locations for colonies and increase population diversity, the idea of differential mutation proposed by differential evolution (DE) was applied to ICA. The established model was experimentally verified in an actual multi-chiller system in a building, and the results showed that the ICA-DE-SVM model could obtain good prediction results. Finally, the proposed model was compared with SVM model, PSO-SVM model, GA-SVM model, WOA-SVM model, and ICA-SVM model. With an MAPE of 0.6%, an MSE of 2.3, and an R2 of 0.9998, the findings demonstrate that the ICA-DE-SVM model has a greater prediction accuracy than the other models.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference35 articles.

1. Carbon peak and carbon neutrality in China: G oals, implementation path and prospects;Wang;China Geology,2021

2. Building energy efficiency in different climates;Lam;Energy Convers Manage,2008

3. Using machine learning techniques for occupancy-prediction-based cooling control in office buildings [J];Peng;Appl Energy,2018

4. Review of modeling methods for HVAC systems;Afram;Appl Therm Eng,2014

5. Modeling and simulation of residential HVAC systems energy consumption;Kassas;Procedia Comput Sci,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3