An efficient wind measurement method with chaotic-sequence improved genetic-particle swarm optimization algorithm

Author:

Wang Encheng1,Mao Zichen1ORCID,Wang Jie1,Lin Daming2

Affiliation:

1. Information Engineering College, North China University of Technology, Beijing, China

2. Research Institute of Highway, Ministry of Transport, Beijing, China

Abstract

Wind power is widely used in industry, meteorology, shipping and so on. Accurate measurement of wind parameters is the key to improve the efficiency of wind power application. But at present, wind parameters are largely measured by different devices based on time difference method, which is easily influnced by enviromental noise. Beam-forming algorithm can improve the ability to resist environmental noise and the accuracy of hardware itself. Therefore, the beam-forming algorithm can be used to measure wind parameters in the high noise environment. However, the efficiency of the algorithm depends on how to search for spectral peak. In this paper, a three-dimensional wind measurement method with chaotic-sequence improved genetic-particle swarm optimization algorithm is proposed to improve the waveform searching efficiency of beamforming algorithm. It first searches for rough target wind parameters globally, and then searches for precise target wind parameters locally. Through simulation verification, the proposed algorithm can measure the wind parameters after 0.087s under the condition of system error of 50dB and environmental noise of 20dB, the accuracy of wind speed is 0.5%, the accuracy of wind direction is 1%, and the accuracy of pitch angle is 0.5%. Compared with the wind measurement by traversal method, the proposed algorithm can improve the wind measurement efficiency by about 20 times, and has similar or even better measurement results.. And by comparing with other algorithms, the advantages of this algorithm are verified.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference24 articles.

1. Wind energy developments and policies in China: A short review;Sahu;Renewable and Sustainable Energy Reviews,2018

2. Trends in Wind Turbine Generator Systems;Polinder;IEEE Journal of Emerging and Selected Topics in Power Electronics,2013

3. Main trends and criteria adopted in economic feasibility studies of offshore wind energy: A systematic literature review;Pires;Energies

4. A novel hybrid model based on weather variables relationships improving applied for wind speed forecasting;Fogno Fotso;International Journal of Energy and Environmental Engineering,2022

5. Flow distortion recorded by sonic anemometers on a long-span bridge: Towards a better modelling of the dynamic wind load in full-scale;Cheynet;Journal of Sound and Vibration,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3