Hair cell specific NTPDase6 immunolocalisation in vestibular end organs: Potential role of purinergic signaling in vestibular sensory transduction

Author:

O'Keeffe Mary G.12,Thorne Peter R.12,Housley Gary D.13,Robson Simon C.4,Vlajkovic Srdjan M.1

Affiliation:

1. Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand

2. Discipline of Audiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand

3. Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia

4. Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA

Abstract

A complex extracellular nucleotide signalling system acting on P2 receptors is involved in regulation of cochlear function in the mammalian inner ear. Ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) are ectonucleotidases that regulate P2 receptor signalling pathways in mammalian tissues by hydrolysing extracellular nucleotides to the respective nucleosides. All enzymes from the CD39/ENTPD family (NTPDase1-8) are expressed in the adult rat cochlea, but their expression and distribution in the vestibular end organ is unknown. This report demonstrates selective expression of NTPDase6 by rat vestibular hair cells. Hair cells transducing both angular acceleration (crista ampullaris) and static head position (maculae of the utricle and saccule) exhibited strong immunolabelling with a bias towards the sensory pole and in particular, the hair cell bundle. NTPDase6 is an intracellular enzyme that can be released in a soluble form from cell cultures and shows an enzymatic preference for nucleoside 5'-diphosphates, such as guanosine 5'-diphosphate (GDP) and uridine 5'-diphosphate (UDP). The main function of NTPDase6 may be the regulation of nucleotide levels in cellular organelles by regulating the conversion of nucleotides to nucleosides. NTPDase6 immunolocalisation in the vestibular end organ could be linked to the regulation of P2 receptor signalling and sensory transduction, including maintenance of vestibular hair bundles.

Publisher

IOS Press

Subject

Neurology (clinical),Sensory Systems,Otorhinolaryngology,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3