Mutual clustered redundancy assisted feature selection for an intrusion detection system

Author:

Veeranna T.1,Reddi Kiran Kumar2

Affiliation:

1. Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India

2. Department of Computer Science, Krishna University, Machilipatnam, Andhra Pradesh, India

Abstract

Intrusion Detection is very important in computer networks because the widespread of internet makes the computers more prone to several cyber-attacks. With this inspiration, a new paradigm called Intrusion Detection System (IDS) has emerged and attained a huge research interest. However, the major challenge in IDS is the presence of redundant and duplicate information that causes a serious computational problem in network traffic classifications. To solve this problem, in this paper, we propose a novel IDS model based on statistical processing techniques and machine learning algorithms. The machine learning algorithms incudes Fuzzy C-means and Support Vector Machine while the statistical processing techniques includes correlation and Joint Entropy. The main purpose of FCM is to cluster the train data and SVM is to classify the traffic connections. Next, the main purpose of correlation is to discover and remove the duplicate connections from every cluster while the Joint entropy is applied for the discovery and removal of duplicate features from every connection. For experimental validation, totally three standard datasets namely KDD Cup 99, NSL-KDD and Kyoto2006+ are considered and the performance is measured through Detection Rate, Precision, F-Score, and accuracy. A five-fold cross validation is done on every dataset by changing the traffic and the obtained average performance is compared with existing methods.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3