Marginal and internal fit of provisional crowns fabricated using 3D printing technology

Author:

Chaturvedi Saurabh,Alqahtani Nasser M.,Addas Mohamed Khaled,Alfarsi Mohammed A.

Abstract

BACKGROUND: Clinicians routinely provide provisional crowns following teeth preparation. Three-dimensional (3D) printing technology could be used over conventional methods for better fit as lack of adequate fit would result in plaque accumulation, micro-leakage, teeth sensitivity, caries and periodontal diseases. OBJECTIVE: The aim of the study was to evaluate the marginal and internal fit of provisional crowns fabricated using 3D printing technology and to compare it with that of compression molding and milling methods. METHODS: Ninety study models were fabricated by duplicating metal master models of the maxillary first premolar molar with three different finish line chamfer, rounded shoulder and rounded shoulder with bevel. On each study model, provisional crowns were fabricated using compression molding (Mo. group, n= 30 – by over impression technique), milling (Mi. group, n= 30 – by 5-axis dental milling machine), and 3D printing method (3D-P. group, n= 30 – by 3D printer). Marginal and internal fit of the samples were evaluated by measuring gap using a scanning electron microscope with a magnification of 27 ×, at 7 zones A–G on different finish line models. The data were statistically analysed using one-way analysis of variance (ANOVA) at the 0.05 significance level. The p-values were calculated using Dunnett’s test. RESULTS: The marginal gap was minimal for the 3D-P. group for each finish line with lowest for rounded shoulder with bevel at zone A 30.6 ± 5.3 and at zone G 32.8 ± 5.4. In axial area, i.e. zones B and F, the minimum gap was noticed for the Mo. group and in Occlusal area (cusp and fossa), for zones C–E maximum gap was determined in Mi. group followed by Mo. and 3D-P. groups. CONCLUSIONS: 3D printed provisional crowns have better marginal and internal fit compared to milled and molded provisional crowns.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3