Affiliation:
1. Rigaku Corporation, Japan
2. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan
Abstract
X-ray phase computed tomography (CT) is used to observe the inside of light materials. In this paper, we report a new study to develop and test a laboratory assembled X-ray phase CT system that comprises an X-ray Lau interferometer, a rotating Mo anode X-ray tube, and a detector with high spatial resolution. The system has a high spatial resolution lower than 10 μm, which is evaluated by differentiating neighbouring carbon fibres in a polymer composite material. The density resolution is approximately 0.035 g/cm3, which enables to successfully distinguish the high-density polyethylene (HDPE, 0.93 g/cm3) from the ultra-low-density polyethylene (ULDPE, 0.88 g/cm3) in the sample. Moreover, the system can be switched to operate on another mode based on a Talbot–Lau interferometer that provides a wider field of view with a moderate spatial resolution (approximately 100 μm). By analyzing sample images of the biological, this study demonstrates the feasibility and advantages of using hybrid configuration of this X-ray phase CT system.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Radiology Nuclear Medicine and imaging,Instrumentation,Radiation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献