Recognition of calcifications in thyroid nodules based on attention-gated collaborative supervision network of ultrasound images

Author:

Zhang Liqun1,Chen Ke1,Han Lin12,Zhuang Yan1,Hua Zhan3,Li Cheng3,Lin Jiangli1

Affiliation:

1. Department of Biomedical Engineering, Sichuan University, Chengdu, China

2. Highong Intellimage Medical Technology (Tianjin) Co., Ltd, Tianjin, China

3. China-Japan Friendship Hospital, Beijing, China

Abstract

BACKGROUND: Calcification is an important criterion for classification between benign and malignant thyroid nodules. Deep learning provides an important means for automatic calcification recognition, but it is tedious to annotate pixel-level labels for calcifications with various morphologies. OBJECTIVE: This study aims to improve accuracy of calcification recognition and prediction of its location, as well as to reduce the number of pixel-level labels in model training. METHODS: We proposed a collaborative supervision network based on attention gating (CS-AGnet), which was composed of two branches: a segmentation network and a classification network. The reorganized two-stage collaborative semi-supervised model was trained under the supervision of all image-level labels and few pixel-level labels. RESULTS: The results show that although our semi-supervised network used only 30% (289 cases) of pixel-level labels for training, the accuracy of calcification recognition reaches 92.1%, which is very close to 92.9% of deep supervision with 100% (966 cases) pixel-level labels. The CS-AGnet enables to focus the model’s attention on calcification objects. Thus, it achieves higher accuracy than other deep learning methods. CONCLUSIONS: Our collaborative semi-supervised model has a preferable performance in calcification recognition, and it reduces the number of manual annotations of pixel-level labels. Moreover, it may be of great reference for the object recognition of medical dataset with few labels.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Reference27 articles.

1. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer;Haugen;Cancer,2016

2. Reliability of Thyroid Imaging Reporting and Data System (TI-RADS), and ultrasonographic classification of the American Thyroid Association (ATA) in differentiating benign from malignant thyroid nodules;Macedo;Archives of Endocrinology and Metabolism,2018

3. Relationship between patterns of calcification in thyroid nodules and histopathologic findings;Kim;Endocrine Journal,2013

4. Computerized detection and quantification of microcalcifications in thyroid nodules;Chen;Ultrasound in Medicine & Biology,2011

5. Automatic feature extraction algorithm for thyroid nodules calcification;Li;Chinese Medical Equipment Journal,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3