Timeliness reduction on industrial turnover index based on machine learning algorithms

Author:

Barreñada Lasai,Gálvez Sainz de Cueto Juan Carlos,Fernández Calatrava Jorge

Abstract

The modernisation of the production of official statistics should make use not only of new data sources but also of novel statistical methods applied to traditional survey and administrative data. This improves the traditional quality standards. Here we present an application of statistical learning algorithms to improve the timeliness under a controlled compromise of accuracy of the Spanish Industrial Turnover Index (ITI). The methodology has been developed based on a modular and standardized approach that could be easily extended to other surveys. Our advanced index allows us to predict the ITI 31 days before publication with a median error of 0.5 points over the period Mar 2016–Apr 21, in an index with large oscillations. The results are promising and support the idea of the use of these techniques in improving the quality dimension of timeliness while accuracy is kept under control.

Publisher

IOS Press

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Management Information Systems

Reference25 articles.

1. High-Level Group for the Modernisation of Official Statistics (HLG-MOS) of the United Nations Economic Commission for Europe;Gjaltema;Statistical Journal of the IAOS

2. UNECE. Modernization of official statistics. 2021; Available from http://unece.org/statistics/modernization-official-statistics.

3. Esteban E, Novás M, Saldaña S, Salgado D, Sanguiao L. Data organisation and process design based on functional modularity for a standard production process. 2018.

4. Salgado D, Oancea B. On new data sources for the production of official statistics. arXiv:2023.06797v1, 2020.

5. Zhang XD. A matrix algebra approach to artificial intelligence. Springer; 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3