Time-Series Aware Metrics for the Evaluation of Intraoperative Electroencephalography-Based Ischemia Detection

Author:

Mina Amir I.1ORCID,Espino Jeremy U.1,Bradley Allison M.1,Thirumala Parthasarathy2,Batmanghelich Kayhan1,Visweswaran Shyam1

Affiliation:

1. Department of Biomedical Informatics, University of Pittsburgh, Pennsylvania, USA

2. Department of Neurological Surgery, University of Pittsburgh, Pennsylvania, USA

Abstract

Continuous intraoperative monitoring with electroencephalo2 graphy (EEG) is commonly used to detect cerebral ischemia in high-risk surgical procedures such as carotid endarterectomy. Machine learning (ML) models that detect ischemia in real time can form the basis of automated intraoperative EEG monitoring. In this study, we describe and compare two time-series aware precision and recall metrics to the classical precision and recall metrics for evaluating the performance of ML models that detect ischemia. We trained six ML models to detect ischemia in intraoperative EEG and evaluated them with the area under the precision-recall curve (AUPRC) using time-series aware and classical approaches to compute precision and recall. The Support Vector Classification (SVC) model performed the best on the time-series aware metrics, while the Light Gradient Boosting Machine (LGBM) model performed the best on the classical metrics. Visual inspection of the probability outputs of the models alongside the actual ischemic periods revealed that the time-series aware AUPRC selected a model more likely to predict ischemia onset in a timely fashion than the model selected by classical AUPRC.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3