Abstract
Stochastic satisfiability (SSAT) is an extension of satisfiability (SAT) that merges two important areas of artificial intelligence: logic and probabilistic reasoning. Initially suggested by Papadimitriou, who called it a “game against nature”, SSAT is interesting both from a theoretical perspective–it is complete for PSPACE, an important complexity class–and from a practical perspective–a broad class of probabilistic planning problems can be encoded and solved as SSAT instances. This chapter describes SSAT and its variants, their computational complexity, applications of SSAT, analytical results, algorithms and empirical results, related work, and directions for future work.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献