Industrial mechanical equipment fault detection and high-performance data analysis technology based on the Internet of Things

Author:

Ding Dawei

Abstract

In view of the problems of low detection accuracy, long detection time, and inability to monitor fault data in real time in the fault detection of traditional machinery and equipment, this paper studies the identification and fault detection of industrial machinery based on the Internet of Things (IoT) technology. By using Internet of Things technology to build a mechanical equipment fault detection system, Internet of Things technology can better build diagnostic and early warning modules for the system, so as to achieve the goal of improving the accuracy of equipment fault detection, shortening equipment fault detection time, and remotely monitoring equipment. The fault detection system studied in this paper has an accuracy rate of more than 93.4% to detect different types of fault. The use of Internet of Things technology is conducive to improving the accuracy of mechanical equipment fault detection and realizing real-time monitoring of equipment data.

Publisher

IOS Press

Reference22 articles.

1. Deep feature generating network: A new method for intelligent fault detection of mechanical systems under class imbalance;Pan;IEEE Transactions on Industrial Informatics.,2020

2. A deep adversarial transfer learning network for machinery emerging fault detection;Li;IEEE Sensors Journal.,2020

3. Fault detection and diagnosis of industrial robot based on power consumption modeling;Sabry;IEEE Transactions on Industrial Electronics.,2019

4. Fault detection of mechanical equipment failure detection using intelligent data analysis;Kovito;Journal of Systems Engineering and Information Technology, JOSEIT.,2022

5. Knowledge-based fault diagnosis in industrial Internet of Things: A survey;Chi;IEEE Internet of Things Journal.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3