Airborne Magnetite- and Iron-Rich Pollution Nanoparticles: Potential Neurotoxicants and Environmental Risk Factors for Neurodegenerative Disease, Including Alzheimer’s Disease

Author:

Maher Barbara A.1

Affiliation:

1. Lancaster Environment Centre, University of Lancaster, UK

Abstract

Fewer than 5% of Alzheimer’s disease (AD) cases are demonstrably directly inherited, indicating that environmental factors may be important in initiating and/or promoting the disease. Excess iron is toxic to cells; iron overload in the AD brain may aggressively accelerate AD. Magnetite nanoparticles, capable of catalyzing formation of reactive oxygen species, occur in AD plaques and tangles; they are thought to form in situ, from pathological iron dysfunction. A recent study has identified in frontal cortex samples the abundant presence of magnetite nanoparticles consistent with high-temperature formation; identifying therefore their external, not internal source. These magnetite particles range from ∼10 to 150 nm in size, and are often associated with other, non-endogenous metals (including platinum, cadmium, cerium). Some display rounded crystal morphologies and fused surface textures, reflecting cooling and crystallization from an initially heated, iron-bearing source material. Precisely-matching magnetite ‘nanospheres’ occur abundantly in roadside air pollution, arising from vehicle combustion and, especially, frictional brake-wear. Airborne magnetite pollution particles <∼200 nm in size can access the brain directly via the olfactory and/or trigeminal nerves, bypassing the blood-brain barrier. Given their toxicity, abundance in roadside air, and nanoscale dimensions, traffic-derived magnetite pollution nanoparticles may constitute a chronic and pernicious neurotoxicant, and hence an environmental risk factor for AD, for large population numbers globally. Olfactory nerve damage displays strong association with AD development. Reported links between AD and occupational magnetic fields (e.g., affecting welders, machinists) may instead reflect inhalation exposure to airborne magnetic nanoparticles.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3