Data Driven Predictive Models Based on Artificial Intelligence to Anticipate the Presence of Plasmopara Viticola and Uncinula Necator in Southern European Winegrowing Regions

Author:

Otero Marta1,Velasquez Luisa Fernanda1,Basile Boris2,Onrubia Jordi Ricard1,Pujol Alex Josep1,Pijuan Josep1

Affiliation:

1. Eurecat, Centre Tecnològic de Catalunya, Unit of Applied Artificial Intelligence, Science and Technology Park of Lleida, Building H3, 25003 Lleida, Spain

2. Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy

Abstract

Downy and powdery mildews are two of the main diseases threatening grapevine cultivation worldwide caused by the phytopathogens Plasmopara viticola and Uncinula necator, respectively. These diseases may cause severe damage to grapevines by inducing wilting of plant organs, including bunches, especially when vines are untreated. This fact, together with the widespread of these pathogens due to the large extensions of land dedicated to grapevine monoculture, makes necessary to develop new predictive modeling tools that allow anticipating disease appearance in the vineyard, minimizing the losses in fruit yield and quality, and helping farmers in defining appropriate and more sustainable disease management strategies (fungicides applied at the right time and dose). For this purpose, farms located in three countries (Portugal, Spain, and Italy) were selected to study the relationship between the microclimatic characteristics of the plots, the phenological stage of the plants throughout the annual cycle, and the presence of both pathogens using different Machine and Deep Learning classification algorithms: Logistic Regression, Decision Trees, Random Forest, Gradient Boosting, K-Nearest Neighbors, Naïve Bayes, Support Vector Machines, and Deep Neural Networks. The results showed that, after an entire annual grapevine cycle, the best performing models were Support Vector Machines for downy mildew and Random Forest for powdery mildew, providing a prediction accuracy of more than 90% for the infection risk and more than 80% for the treatment recommendation. These models will be fine-tuned during two additional vegetative seasons to ensure their robustness and will receive short- and medium-term climatological and phenological forecasts to make recommendations. The preliminary results obtained show that these models are a promising tool in the field of plant disease prevention and resource saving.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3