Contextual TV Show Recommendation

Author:

Duran Paula Gómez1,Vitrià Jordi1

Affiliation:

1. Departament de Matemàtiques i Informàtica, Universitat de Barcelona

Abstract

Recommender systems are a form of artificial intelligence that is used to suggest items to users of digital platforms. They use large data sets to infer models of users’ behavior and preferences in order to recommend items that the user may be interested in. Following the trend imposed by digital media companies and willing to adapt to the media consumption habits of their customers, TV broadcasters are starting to realize the potential of recommender systems to personalize the access to their online catalog. By understanding what viewers are watching and what they might like, TV broadcasters can improve the quality of their programming, increase viewership, and attract new viewers. In this work, we analyze one specific group of users that TV broadcasters must take into account when creating a recommender system: non-logged users. In this scenario the challenge is to use contextual information about the interaction in order to predict recommendations, as it is not feasible to use any kind of information about the user. We propose a method to leverage data from other type of users (logged users and identified devices) by using Graph Convolutional Networks in order to come up with a more accurate recommender system for unidentified users.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3