Modified reinforcement learning based- caching system for mobile edge computing

Author:

Mehamel Sarra12,Bouzefrane Samia2,Banarjee Soumya2,Daoui Mehammed1,Balas Valentina E.3

Affiliation:

1. University Mouloud Mammeri of Tizi-Ouzou, Algeria

2. Conservatoire National des Arts et Métiers, Paris, France

3. Aurel Vlaicu University of Arad, Romania

Abstract

Caching contents at the edge of mobile networks is an efficient mechanism that can alleviate the backhaul links load and reduce the transmission delay. For this purpose, choosing an adequate caching strategy becomes an important issue. Recently, the tremendous growth of Mobile Edge Computing (MEC) empowers the edge network nodes with more computation capabilities and storage capabilities, allowing the execution of resource-intensive tasks within the mobile network edges such as running artificial intelligence (AI) algorithms. Exploiting users context information intelligently makes it possible to design an intelligent context-aware mobile edge caching. To maximize the caching performance, the suitable methodology is to consider both context awareness and intelligence so that the caching strategy is aware of the environment while caching the appropriate content by making the right decision. Inspired by the success of reinforcement learning (RL) that uses agents to deal with decision making problems, we present a modified reinforcement learning (mRL) to cache contents in the network edges. Our proposed solution aims to maximize the cache hit rate and requires a multi awareness of the influencing factors on cache performance. The modified RL differs from other RL algorithms in the learning rate that uses the method of stochastic gradient decent (SGD) beside taking advantage of learning using the optimal caching decision obtained from fuzzy rules.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3