Tourism Recommender System Based on Cognitive Similarity Between Cross-Cultural Users

Author:

Nguyen Luong Vuong1,Nguyen Tri-Hai1,Jung Jason J.1

Affiliation:

1. Department of Computer Engineering, Chung-Ang University, Seoul 156-756, Republic of Korea

Abstract

Nowadays, the speedy increasing information in tourism services since a massive amount of data is constructed by tourists experiences. The recommendation systems are widely applied to tourism services and focus on determining personalized user preferences to handle this extensive information. Exploiting the different cultural effects rarely consider in recent studies despite this factor influences recommendation based on user preferences. Furthermore, existing research only evaluates the relevance of cultural differences to their recommendation, rather than using the cross-cultural factors to recommendations systems. This paper proposes the collaborative filtering recommendation system based on similar tourist places where users from different cross-cultural can share their spatial experiences. To do that, we first collect user feedback about similar tourist places from many nationalities (consider as the cultures). We then exploit this feedback to define similar cross-cultural users (neighbors) based on a cognitive similarity. Finally, the system generates personalized recommendations based on user experiences and their neighbors. The initial dataset collected from TripAdvisor, consisting of four types such as hotels, restaurants, shopping malls, and attractions, is provided to the feedback collection function in our experiment. We were using the classical method, user-based Pearson correlation, as a baseline to demonstrate the performance of our proposed method. The result shows that the proposed system outperforms the baseline in terms of MAE and RMSE metrics.

Publisher

IOS Press

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3