Texture feature dimensionality reduction-based mammography classification using Random Forest

Author:

Zhang Xuejun12,Zhang Susu1,Bu Zhaohui23,Ma Liangdi2,Huang Ju1

Affiliation:

1. School of Computer and Electronic Information, Guangxi University, Nanning, Guangxi, China

2. Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, Guangxi, China

3. School of Foreign Language, Guangxi University, Nanning, Guangxi, China

Abstract

Breast cancer is the most frequent cancer and the leading cause of death among females. Diagnosis mass from mammogram correctly can reduce the unnecessary biopsy to a large extent. In this paper, we present a novel mammogram classification method combining the Random Forest and the Locally Linear Embedding (LLE) dimensionality reduction algorithm for texture features. The proposed method consists of three stages. In the first stage, preprocessing is performed to enhance the contrast and suppress the noise of the ROI images. Then, the sixteen-dimensional texture features are extracted from Grey Level Co-occurrence Matrix (GLCM) as the input dataset of LLE and being mapped into a five-dimensional subspace. Finally, a Random Forest classifier is investigated for the mammogram classification and compared with the other four classifiers (SVM, KNN, Logistic Regression, MLPC). The experimental results show that the Random Forest classifier outperforms than the others, with an average accuracy of 92.87% and the AUC value of 0.99, that indicates that the combination of LLE algorithm and Random Forest classifier is a promising method for the mammogram classification.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3