Affiliation:
1. State Key Laboratory of Dynamic Testing Technology, School of Information and Communication Engineering, North University of China, Taiyuan Shanxi Province, China
Abstract
BACKGROUND: Low-dose CT (LDCT) images usually contain serious noise and artifacts, which weaken the readability of the image. OBJECTIVE: To solve this problem, we propose a compound feature attention network with edge enhancement for LDCT denoising (CFAN-Net), which consists of an edge-enhanced module and a proposed compound feature attention block (CFAB). METHODS: The edge enhancement module extracts edge details with the trainable Sobel convolution. CFAB consists of an interactive feature learning module (IFLM), a multi-scale feature fusion module (MFFM), and a joint attention module (JAB), which removes noise from LDCT images in a coarse-to-fine manner. First, in IFLM, the noise is initially removed by cross-latitude interactive judgment learning. Second, in MFFM, multi-scale and pixel attention are integrated to explore fine noise removal. Finally, in JAB, we focus on key information, extract useful features, and improve the efficiency of network learning. To construct a high-quality image, we repeat the above operation by cascading CFAB. RESULTS: By applying CFAN-Net to process the 2016 NIH AAPM-Mayo LDCT challenge test dataset, experiments show that the peak signal-to-noise ratio value is 33.9692 and the structural similarity value is 0.9198. CONCLUSIONS: Compared with several existing LDCT denoising algorithms, CFAN-Net effectively preserves the texture of CT images while removing noise and artifacts.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献