Enhancement based convolutional dictionary network with adaptive window for low-dose CT denoising

Author:

Liu Yi1,Yan Rongbiao1,Liu Yuhang1,Zhang Pengcheng1,Chen Yang2,Gui Zhiguo1

Affiliation:

1. The State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China

2. The Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing, China

Abstract

BACKGROUND: Recently, one promising approach to suppress noise/artifacts in low-dose CT (LDCT) images is the CNN-based approach, which learns the mapping function from LDCT to normal-dose CT (NDCT). However, most CNN-based methods are purely data-driven, thus lacking sufficient interpretability and often losing details. OBJECTIVE: To solve this problem, we propose a deep convolutional dictionary learning method for LDCT denoising, in which a novel convolutional dictionary learning model with adaptive window (CDL-AW) is designed, and a corresponding enhancement-based convolutional dictionary learning network (called ECDAW-Net) is constructed to unfold the CDL-AW model iteratively using the proximal gradient descent technique. METHODS: In detail, the adaptive window-constrained convolutional dictionary atom is proposed to alleviate spectrum leakage caused by data truncation during convolution. Furthermore, in the ECDAW-Net, a multi-scale edge extraction module that consists of LoG and Sobel convolution layers is proposed in the unfolding iteration, to supplement lost textures and details. Additionally, to further improve the detail retention ability, the ECDAW-Net is trained by the compound loss function of the pixel-level MSE loss and the proposed patch-level loss, which can assist to retain richer structural information. RESULTS: Applying ECDAW-Net to the Mayo dataset, we obtained the highest peak signal-to-noise ratio (33.94) and sub-optimal structural similarity (0.92). CONCLUSIONS: Compared with some state-of-art methods, the interpretable ECDAW-Net performs well in suppressing noise/artifacts and preserving textures of tissue.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3