Accelerating image reconstruction for multi-contrast MRI based on Y-Net3+

Author:

Cai Xin1,Hou Xuewen2,Sun Rong1,Chang Xiao1,Zhu Honglin1,Jia Shouqiang3,Nie Shengdong1

Affiliation:

1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China

2. Shanghai Kangda COLORFUL Healthcare Co., Ltd, Shanghai, China

3. Department of Imaging, Jinan People’s Hospital affiliated to Shandong First Medical University, Shandong, China

Abstract

BACKGROUND: As one of the significant preoperative imaging modalities in medical diagnosis, Magnetic resonance imaging (MRI) takes a long scanning time due to its special imaging principle. OBJECTIVE: We propose an innovative MRI reconstruction strategy and data consistency method based on deep learning to reconstruct high-quality brain MRIs from down-sampled data and accelerate the MR imaging process. METHODS: Sixteen healthy subjects undergoing T1-weighted spin-echo (SE) and T2-weighted fast spin-echo (FSE) sequences by a 1.5T MRI scanner were recruited. A Y-Net3+ network was used to facilitate the high-quality MRI reconstruction through context information. In addition, the existing data consistency fidelity method was improved. The difference between the reconstructed K-space and the original K-space was shorten by the linear regression algorithm. Therefore, the redundant artifacts derived from under-sampling were avoided. The Structural Similarity (SSIM) and Peak Signal to Noise Ratio (PSNR) were applied to quantitatively evaluate image reconstruction performance of different down-sampling patterns. RESULTS: Compared with the classical Y-Net, Y-Net3+ network improved SSIM and PSNR of MRI images from 0.9164±0.0178 and 33.2216±3.2919 to 0.9387±0.0363 and 35.1785±3.3105, respectively, under compressed sensing reconstruction with acceleration factor of 4. The improved network increases signal-to-noise ratio and adds more image texture information in the reconstructed images. Furthermore, in the process of data consistency, linear regression analysis was used to reduce the difference between the reconstructed K-space and the original K-space, so that the SSIM and PSNR were increased to 0.9808±0.0081 and 40.9254±1.1911, respectively. CONCLUSIONS: The improved Y-Net combined with data consistency fidelity method elucidates its potential in reconstructing high-quality T2-weighted images from the down-sampled data by fully exploring the T1-weighted information. With the advantage of avoiding down-sampled artifacts, the improved network exhibits remarkable clinical promise for fast MRI applications.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Reference27 articles.

1. Sparse MRI: The application of compressed sensing for rapid MR imaging;Lustig;Magnetic Resonance in Medicine,2007

2. Image processing for medical diagnosis using CNN;Arena;Nuclear Instruments and Methods In Physics Research Section A,2003

3. Goodfellow I. , Pouget-abadie J. , Mirza M. , et al., Generative Adversarial Nets/Advances in Neural Information Processing Systems, Quebec City, Curran Associates, Inc., 2014, pp. 2672–2680.

4. Image Reconstruction for MRI using Deep CNN Priors Trained without Groundtruth

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3