Dual attention fusion UNet for COVID-19 lesion segmentation from CT images

Author:

Ma Yinjin1,Zhang Yajuan2,Chen Lin1,Jiang Qiang3,Wei Biao4

Affiliation:

1. School of Data Science, Tongren University, Tongren, China

2. Cangzhou Jiaotong College, Cangzhou, China

3. Tongren City People’s Hospital, Tongren, China

4. Key Laboratory of OptoelectronicTechnology and Systems, Ministry of Education, Chongqing University, Chongqing, China

Abstract

BACKGROUND: Chest CT scan is an effective way to detect and diagnose COVID-19 infection. However, features of COVID-19 infection in chest CT images are very complex and heterogeneous, which make segmentation of COVID-19 lesions from CT images quite challenging. OBJECTIVE: To overcome this challenge, this study proposes and tests an end-to-end deep learning method called dual attention fusion UNet (DAF-UNet). METHODS: The proposed DAF-UNet improves the typical UNet into an advanced architecture. The dense-connected convolution is adopted to replace the convolution operation. The mixture of average-pooling and max-pooling acts as the down-sampling in the encoder. Bridge-connected layers, including convolution, batch normalization, and leaky rectified linear unit (leaky ReLU) activation, serve as the skip connections between the encoder and decoder to bridge the semantic gap differences. A multiscale pyramid pooling module acts as the bottleneck to fit the features of COVID-19 lesion with complexity. Furthermore, dual attention feature (DAF) fusion containing channel and position attentions followed the improved UNet to learn the long-dependency contextual features of COVID-19 and further enhance the capacity of the proposed DAF-UNet. The proposed model is first pre-trained on the pseudo label dataset (generated by Inf-Net) containing many samples, then fine-tuned on the standard annotation dataset (provided by the Italian Society of Medical and Interventional Radiology) with high-quality but limited samples to improve performance of COVID-19 lesion segmentation on chest CT images. RESULTS: The Dice coefficient and Sensitivity are 0.778 and 0.798 respectively. The proposed DAF-UNet has higher scores than the popular models (Att-UNet, Dense-UNet, Inf-Net, COPLE-Net) tested using the same dataset as our model. CONCLUSION: The study demonstrates that the proposed DAF-UNet achieves superior performance for precisely segmenting COVID-19 lesions from chest CT scans compared with the state-of-the-art approaches. Thus, the DAF-UNet has promising potential for assisting COVID-19 disease screening and detection.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3