A novel purification machine and fuzzy inference method based hybrid model for wind speed forecasting

Author:

Ren Weina1,Li Chengdong2,Wen Peng3

Affiliation:

1. Department of Electrical Engineering and Automation, Shandong Labor Vocational and Technical College, Jinan, Shandong, China

2. Shandong Key Laboratory of Intelligent Buildings Technology, School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan, Shandong, China

3. Jinan Municipal Engineering Design and Research Institute (Group) Co., Ltd, Jinan, Shandong, China

Abstract

As one kind of readily available renewable energy sources, wind is widely used in power generation where wind speed plays an important role. Generally speaking, we need to forecast the wind speed for improving the controllability of wind power generation. However, there exists considerable randomness and instabilities in wind speed data so that it is difficult to obtain accurate forecasting results. In this paper, we propose a novel fuzzy inference method based hybrid model for accurate wind speed forecasting. In this hybrid model, we adopt two strategies to enhance the estimation performance. On one hand, we propose the purification machine which utilize the Irregular Information Reduction Module (IIRM) and the Irrelevant Variable Reduction Module (IVRM) to reduce the randomness and instabilities of the data and to eliminate the variables with zero or negative effect in the wind speed time series. On the other hand, we adopt the developed Single-Input-Rule-Modules based Fuzzy Inference System (SIRM-FIS), the functionally weighted SIRM-FIS (FWSIRM-FIS) to realize the prediction of wind speed. This FWSIRM-FIS utilizes the multi-variable functional weights to dynamically measure the importance of the input variables so that the input-output mapping can be strengthened and more accurate forecasting results can be achieved. Furthermore, detailed experiments and comparisons are given. Experimental results demonstrate that the proposed FWSIRM-FIS and purification machine contributes greatly to deal with the randomness and instability in the wind speed data and yield more accurate forecasting results than those existing excellent forecasting models.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3