Affiliation:
1. Graduate School of Software & Information Science, Iwate Prefectural University, Iwate, Japan
2. Faculty of Software & Information Science, Iwate Prefectural University, Iwate, Japan
Abstract
The fundamental aim of feature selection is to reduce the dimensionality of data by removing irrelevant and redundant features. As finding out the best subset of features from all possible subsets is computationally expensive, especially for high dimensional data sets, meta-heuristic algorithms are often used as a promising method for addressing the task. In this paper, a variant of recent meta-heuristic approach Owl Search Optimization algorithm (OSA) has been proposed for solving the feature selection problem within a wrapper-based framework. Several strategies are incorporated with an aim to strengthen BOSA (binary version of OSA) in searching the global best solution. The meta-parameter of BOSA is initialized dynamically and then adjusted using a self-adaptive mechanism during the search process. Besides, elitism and mutation operations are combined with BOSA to control the exploitation and exploration better. This improved BOSA is named in this paper as Modified Binary Owl Search Algorithm (MBOSA). Decision Tree (DT) classifier is used for wrapper based fitness function, and the final classification performance of the selected feature subset is evaluated by Support Vector Machine (SVM) classifier. Simulation experiments are conducted on twenty well-known benchmark datasets from UCI for the evaluation of the proposed algorithm, and the results are reported based on classification accuracy, the number of selected features, and execution time. In addition, BOSA along with three common meta-heuristic algorithms Binary Bat Algorithm (BBA), Binary Particle Swarm Optimization (BPSO), and Binary Genetic Algorithm (BGA) are used for comparison. Simulation results show that the proposed approach outperforms similar methods by reducing the number of features significantly while maintaining a comparable level of classification accuracy.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献