Feature selection in classification using self-adaptive owl search optimization algorithm with elitism and mutation strategies

Author:

Mandal Ashis Kumar1,Sen Rikta1,Chakraborty Basabi2

Affiliation:

1. Graduate School of Software & Information Science, Iwate Prefectural University, Iwate, Japan

2. Faculty of Software & Information Science, Iwate Prefectural University, Iwate, Japan

Abstract

The fundamental aim of feature selection is to reduce the dimensionality of data by removing irrelevant and redundant features. As finding out the best subset of features from all possible subsets is computationally expensive, especially for high dimensional data sets, meta-heuristic algorithms are often used as a promising method for addressing the task. In this paper, a variant of recent meta-heuristic approach Owl Search Optimization algorithm (OSA) has been proposed for solving the feature selection problem within a wrapper-based framework. Several strategies are incorporated with an aim to strengthen BOSA (binary version of OSA) in searching the global best solution. The meta-parameter of BOSA is initialized dynamically and then adjusted using a self-adaptive mechanism during the search process. Besides, elitism and mutation operations are combined with BOSA to control the exploitation and exploration better. This improved BOSA is named in this paper as Modified Binary Owl Search Algorithm (MBOSA). Decision Tree (DT) classifier is used for wrapper based fitness function, and the final classification performance of the selected feature subset is evaluated by Support Vector Machine (SVM) classifier. Simulation experiments are conducted on twenty well-known benchmark datasets from UCI for the evaluation of the proposed algorithm, and the results are reported based on classification accuracy, the number of selected features, and execution time. In addition, BOSA along with three common meta-heuristic algorithms Binary Bat Algorithm (BBA), Binary Particle Swarm Optimization (BPSO), and Binary Genetic Algorithm (BGA) are used for comparison. Simulation results show that the proposed approach outperforms similar methods by reducing the number of features significantly while maintaining a comparable level of classification accuracy.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference44 articles.

1. Recent advances in feature selection and its applications;Li;Knowledge and Information Systems,2017

2. An efficient feature selection technique for clustering based on a new measure of feature importance;Goswami;Journal of Intelligent and Fuzzy Systems,2017

3. A survey on feature selection methods;Chandrashekar;Computers & Electrical Engineering,2014

4. Feature selection for unsupervised learning;Dy;Journal of Machine Learning Research,2004

5. A novel intrusion detection system for wireless mesh network with hybrid feature selection technique based on ga and mi;Anand;Journal of Intelligent & Fuzzy Systems,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3