A new oval shaft, high performance, 2 pole line start synchronous reluctance machine for submersible pump applications

Author:

Tekgun Didem1,Alan Irfan1

Affiliation:

1. , Abdullah Gul University, , Turkey

Abstract

In this paper, a 2 pole, 4 kW, 6 inches diameter line start synchronous reluctance machine (LS-SynRM) as a submersible water pump motor is designed and optimized with a new oval shaft structure. The aim is to improve the machine performance by widening the flux path on the rotor via narrowing down the shaft on the q-axis. This way a wider d-axis flux path is obtained, and accordingly, the d-axis inductance, the saliency ratio Ld∕Lq, and the inductance difference Ld–Lq are increased. First, a set of structural analyses is carried out on a 7-flux barrier rotor in 3 stages: modal, harmonic, and static structural analyses. According to analysis results, the safe limit for the shaft size reduction is determined as 8 mm to avoid excessive deformations and undesired vibrations due to resonance. Later, the machine is optimized using Multi-Objective Differential Evolution (MODE) algorithm with a narrower shaft. The quality of the Pareto front solutions shows that the oval shaft machine is superior to the circular shaft machine in terms of efficiency, motor mass, and torque ripple. The maximum recorded efficiency improvement for the same size LS-SynRM is 4 points and the same size commercial induction machine is around 20 points.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3