Morphic Arrangement of High Flexibility and Aspect Ratio Wing

Author:

Skarka Wojciech1,Ciomperlik Nikodem1

Affiliation:

1. Silesian University of Technology

Abstract

Morphing of aerodynamic surfaces or conformal shape adaptation of aerodynamic surfaces can be used to control aircraft, utilized similarly as in nature, where insects and birds deform their wings to achieve a wide range of flight conditions. Morphing of wings has the potential to bring numerous advantages in flight performance in comparison to a rigid, conventional solution, that utilizes stiff aerodynamic surfaces. Reduction of parasitic drag due to the lack of gaps between the various moveable surfaces is one of them. Even so, a wing whose sections are able to deform independently or conform can better adapt to wide range of flight conditions than a rigid solution, or a solution based on conventional aerodynamic surfaces, such as flaps and ailerons. Additionally, the conformal shape adaptation or morphing of aerodynamic surfaces may lead to a potentially reduced weight and mechanical complexity, which may be achieved by utilizing wing deformations directly in the structure instead of connecting conventional actuation devices to the system. The aim of this paper is to propose a morphic arrangement of a high flexibility and high aspect ratio wing, that could be utilized in High Altitude Long Endurance aircraft, where the efficiency of the design is of utmost importance. A significant reduction of parasitic drag and reduction of weight is a promising basis for pursuing morphic and conformal shape adaptation designs. This paper qualitatively explores the space of morphic arrangements and conformal shape adaptation designs and utilizes inventive approaches to check and identify designs that may be promising. A wing design is proposed, that utilizes morphing of wing and conformal shape adaptation.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3