Study on Efficient Fused Deposition Modelling of Thermoplastic Polyurethane Inflatable Wall Features for Airtightness

Author:

Chen Mo1,Ji Qinglei12,Zhang Xiran2,Feng Lei2,Wang Xi Vincent1,Wang Lihui1

Affiliation:

1. Department of Production Engineering, KTH Royal Institute of Technology, Sweden

2. Department of Machine Design, KTH Royal Institute of Technology, Sweden

Abstract

The thermoplastic polyurethane (TPU) material is an elastomer that can be used for inflatable products. Fused deposition modelling (FDM) is a widely used additive manufacturing process for TPU material due to the capability of generating complex structures with low cost. However, TPU is soft and thus difficult to be extruded as continuously and uniformly as hard materials such as polylactide by FDM. Inappropriate extruder structure and speed settings can lead to filament buckling problem, resulting in poor material filling quality, long printing time and low printing success rate. This paper aims at improving the FDM printing efficiency of TPU inflatable products by adding lateral support to the filament and finding out the appropriate speed ranges for different wall features and thicknesses. Firstly, a filament guide sheet is designed as being inserted into the gap between the drive gears and the bottom frame of the gear chamber in order to prevent the soft TPU filament from buckling. Secondly, inflatable product wall features are classified into floors, roofs and sidewalls and experiment for finding the relationship between printing speed and airtightness is carried out. In order to verify the proposed solution, wall features are printed and the material fillings obtained under different printing speeds are compared by measuring the airtightness of the wall features. Results show that the proposed filament guide sheet mitigates filament buckling, and the speed range that meets the airtightness requirement can be found for various wall features and thicknesses. In summary, the sealing of the filament feeding channel between the drive gears and the nozzle, as well as the speed optimisation according to product features, are essential for the efficient printing of TPU inflatable products.

Publisher

IOS Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3