High-Speed Localization Estimation Method Using Lighting Recognition in Tunnels

Author:

Moko Yushi1,Hiruma Yuka2,Hayakawa Tomohiko12,Onishi Yoshimasa3,Ishikawa Masatoshi1

Affiliation:

1. Tokyo University of Science, Japan

2. The University of Tokyo, Japan

3. Central Nippon Expressway Company Limited, Japan

Abstract

This study proposes a vision-based high-speed localization estimation method for location based visual inspection of specific cracks in tunnels on Japanese expressways where global navigation satellite systems are not applicable. The method relies on recognizing lighting facilities installed in tunnels by using random sample consensus (RANSAC), enabling stable and accurate localization estimation in the horizontal direction. To correspond with traveling at high speed, single instruction/multiple data (SIMD) conversion realized 8 times faster than conventional image processing. The evaluation experimental results on expressway demonstrate that the proposed method achieves a maximum error of 31 mm in estimating lighting facilities position with an average error of 16 mm. The theoretical value derived from tunnel completion drawings has a maximum difference of 177 mm from the total value by this method, indicating that the results of accurate on-site measurements should be prioritized over completion drawings. In conclusion, the proposed method has considerable potential for practical application in tunnel inspection and maintenance.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3