Exploring Subway Relational Model in Decision Support Systems

Author:

Chtioui Sondoss12,Saudrais Sébastien1,Mouelhi Sebti1,Azib Toufik1,Ille Marc2,Morel Melanie2,Rossi Alexandre2,Charmetant Jerome2

Affiliation:

1. ESTACA, ESTACA’Lab, LavaL & Paris-Saclay, France

2. EGIS Rail, Lyon, France

Abstract

This paper examines recent research in the field of public transportation, specifically focusing on the development of learning algorithms for predicting the behavior of trains and buses. However, it underscores the overlooked significance of having a clear and structured representation of data entities. To address this oversight, a relational model is proposed that captures the essential data fields specific to the subway system to enhance the learning process. The model undergoes validation through collaboration with a metro control center and domain experts. Furthermore, the study integrates this relational model into a hybrid approach that combines online and offline machine learning techniques. This approach effectively forecasts delays and passenger flow, thereby enabling informed decision-making and optimizing rail operations through a decision support system. The paper concludes by emphasizing the pivotal role of the proposed model in facilitating the selection of relevant variables for each learning problem.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3